

Bonded Joints in Military Aircraft

Dr Barbara Gordon Consultant - University of Bristol

University of BRISTOL

Bonded Joints in Military aircraft

- Successfully used since mid 80's
- Major composite structure for production aircraft
- UK Examples include.....

Future Military Aircraft - Challenges

- Previous military aircraft projects
 - Design phase several years
 - Typically 1000+ aircraft
 - Large projects, long development, high cost

- Future aircraft programmes
 - Small batch numbers
 - Multiple customers / configurations
 - Rapid design process (months not years!)
 - Lower cost manufacturing methods
 - BUT still same level airworthiness
- Option Bonded structure
 - Problems....

Possible manufacturing solutions include: Out of autoclave processing Different material systems Low cost tooling

Bonded rather than bolted structures
Applications include eg
Skin to substructure bonding
Spar to rib cleating

Composite assembly tolerance control issues

• Eg Bonded J spar configuration

BRISTOL Assembly advantages of paste adhesive

Advantages

- New paste adhesives similar strength to film adhesives
- Gap filling capability
- Dimensional control with cheap tooling
- Appropriate small batch manufacture

Problems/ Disadvantages......

Secondary bonding

TYPICAL SPAR AND RIB CLEATING CONFIGURATION

- Problems/ Disadvantages......
 - Pre- cured parts
 - Surface preparation / cleaning
 - Potential contamination
 - Determining / ensuring integrity of bond

Approach for improvement....

- Addressing whole process
- Before Bonding
 - Advanced cleaning methods
 - Advanced inspection methods skins after cleaning

BRISTOL Surface Preparation and Cleaning

- Manual cleaning operation
 - High skill activity
 - Could possibly miss the op out altogether...
- Aim method to take man out of the loop
 - Options include
 - eg plasma cleaning being investigated
 - But sometimes:
 - not remove all contaminants
 - Alter contaminant surface without removing

BRISTOL Surface inspection before bonding

- Traditionally surface wetting
- Aim Automate, take man out of the process.
- Advanced inspection methods

Issues detecting modified contaminant

BRISTOL Adhesive Bonded Joint Problems

- Bigger issue with paste than film adhesives
- Particularly:
 - More Porosity / voids limits ability to NDT
 - Surface issues disbonds / kissing (zero volume bonds) / low strength adhesion
 - Poor mixing
 - Thicker bondlines can lead to more cracking

BRISTOL Adhesive Bonded Joint Problems

- Currently:
 - HAVE to proof load the structure
 - "We must find an NDT technique that gets us away from this position"
 - How does SHM fit in with this?

Summary

• Future military aircraft

- Small batch production
- Short timescales
- Low cost
- Same level airworthiness
- New paste adhesives:
 - Low cost manufacturing
- Need to demonstrate bond integrity
 - Currently MUST proof load
 - Need NDT technique to move from this position

 Acknowledgements to BAE Systems for provision of majority of images and information to support this presentation

